Selective Photodetection and Photodynamic Therapy of Prostate Cancer through Targeting of Proteolytic Activity
نویسندگان
چکیده
Frequent side effects of radical treatment modalities and the availability of novel diagnostics have raised the interest in focal therapies for localized prostate cancer. To improve the selectivity and therapeutic efficacy of such therapies, we developed a minimally invasive procedure, based on a novel polymeric photosensitizer prodrug sensitive to urokinase-like plasminogen activator (uPA). The compound is inactive in its prodrug form and accumulates passively at the tumor site by the enhanced permeability and retention effect. There, the prodrug is selectively converted to its photoactive form by uPA which is overexpressed by prostate cancer cells. Irradiation of the activated photosensitizer exerts a tumorselective phototoxic effect. The prodrug alone (8 μM) showed no toxic effect on PC-3 cells, but upon irradiation the cell viability was reduced by 90%. In vivo, after systemic administration of the prodrug, PC-3 xenografts became selectively fluorescent. This is indicative of the prodrug accumulation in the tumor and selective local enzymatic activation. Qualitative analysis of the activated compound confirmed that the enzymatic cleavage occurred selectively in the tumor, with only trace amounts in the neighboring skin or muscle. Subsequent photodynamic therapy studies demonstrated complete tumor eradication of animals treated with light (150 J/cm at 665 nm) 16 hours after the injection of the prodrug (7.5 mg/kg). These promising results evidence the excellent selectivity of our prodrug with the potential to be used for both, imaging and therapy of localized prostate cancer. on April 13, 2017. © 2012 American Association for Cancer Research. mct.aacrjournals.org Downloaded from Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Author Manuscript Published OnlineFirst on December 27, 2012; DOI: 10.1158/1535-7163.MCT-12-0780
منابع مشابه
Selective photodetection and photodynamic therapy for prostate cancer through targeting of proteolytic activity.
Frequent side effects of radical treatment modalities and the availability of novel diagnostics have raised the interest in focal therapies for localized prostate cancer. To improve the selectivity and therapeutic efficacy of such therapies, we developed a minimally invasive procedure based on a novel polymeric photosensitizer prodrug sensitive to urokinase-type plasminogen activator (uPA). The...
متن کاملCancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells
Cancer, as one of the most serious public health problems, is the second-leading cause of death in the world after cardiovascular disease. The number of patients and the resulting mortality are increasing worldwide; therefore, early diagnosis, prevention, and effective treatment of cancer are very important. Current treatments such as chemotherapy and radiation therapy are often non-selective a...
متن کاملSize-Dependent Photodynamic Anticancer Activity of Biocompatible Multifunctional Magnetic Submicron Particles in Prostate Cancer Cells.
In this study, newly designed biocompatible multifunctional magnetic submicron particles (CoFe₂O₄-HPs-FAs) of well-defined sizes (60, 133, 245, and 335 nm) were fabricated for application as a photosensitizer delivery agent for photodynamic therapy in cancer cells. To provide selective targeting of cancer cells and destruction of cancer cell functionality, basic cobalt ferrite (CoFe₂O₄) particl...
متن کاملTheranostic Agents for Photodynamic Therapy of Prostate Cancer by Targeting Prostate-Specific Membrane Antigen.
Prostatectomy has been the mainstay treatment for men with localized prostate cancer. Surgery, however, often can result in major side effects, which are caused from damage and removal of nerves and muscles surrounding the prostate. A technology that can help surgeons more precisely identify and remove prostate cancer resulting in a more complete prostatectomy is needed. Prostate-specific membr...
متن کاملEvaluation of Anti-cancer activity of Boswellic acid and Montelukast sodium against human prostate cancer cell line PC-3
Prostate cancer is a devastating disease for which current therapies are inadequate. Various lines of evidences have suggested the 5-lipoxygenase (5-LOX) pathway and the leukotriene receptor pathway are potential targets for prevention or treatment of Prostate cancer. Thus, search for new anti-cancer drugs targeting 5-LOX and leukotriene is very essential and important. The objective of the pre...
متن کامل